Classe de SG

de Jamhour

Chapitres 15,22,23 et 24+ enjeux énergétiques

Mai 2014

EXERCICE 1 (7 points) La liaison ADSL

1. Chaîne de transmission

1.a.(1pt) Il y a un seul canal physique entre l'abonné et le commutateur.

Deux signaux doivent y passer : celui du téléphone et celui de l'ADSL.

b. (1pt) le modem

2. Mode de transmission

a. (1pt) Le canal 0 transmet le signal vocal engendré par le téléphone.

La bande de fréquences 300-3400 Hz des signaux vocaux est bien contenue ds le canal 0 de largeur

4312.5 Hz, donc le signal du téléphone peut y être transmis.

b.(1,5 pt) Chaque canal fréquentiel est capable de transférer 32,000 kbit durant une seconde.

b.1. pour le transfert des données **montantes** : il y a 17 canaux (**de 15 à 31**) d'où $D = 17*32,000 = 544,0 \text{ kbit.s}^{-1}$

b.2. pour le transfert des données **descendantes : :** il y a 224 canaux (**de 32 à 255**) d'où $D = 224*32,000 = -7168 \text{ kbit.s}^{-1} = 7,168 \text{ Mbit.s}^{-1}$

b.3. les débits ne sont les mêmes, donc cette liaison est asymétrique.

3. a. (1,5pt) Pour une portion de ligne : $A = \alpha L$ et en additionnant des différentes portions de la Ligne composite cela donne : A = 15,0*1,423 + 2,481*10,3+0,560*7,90 = 51,3 dB.

b. (1pt) D'après la fig.5, pour une atténuation de 51,3 dB, les débits des 2 technologies sont les mêmes : 2,5 **Mbit.s**⁻¹. Il n'y a pas d'avantage à payer l'ADSL 2+ dans ce cas.

EXERCICE 2 (7 points) Bâtiment basse consommation

I- I- Approche globale des échanges énergétiques dans une maison

1.(1pt) La résistance thermique de l'isolation est : $\mathbf{R}_{th} = \frac{\mathbf{r}}{\mathbf{S}}$ et $\mathbf{r} = \frac{\mathbf{e}}{\lambda}$ alors $\mathbf{R}_{th} = \frac{\mathbf{e}}{\lambda S}$

$$\mathbf{R_{th}} = \frac{0.30}{0.040.120} = \mathbf{0.063 \ k.W^{-1}}$$

* Masse volumique de l'eau : ρ_0 = 1,00 kg.L⁻¹

2.(1,5 pt) La résistance thermique surfacique est proportionnelle à e et inversement proportionnelle à la conductivité thermique du matériau. Le quotient des conductivités thermiques de la brique et de la paille est $\frac{\lambda_{brique}}{\lambda_{paille}} = \frac{0.84}{0.040} = 21$. Pour avoir la même isolation, l'épaisseur de brique devra donc être 21 fois plus grande que cette du mur en paille, soit $21 \times 0.30 = 6.3$ m.

II- Cas d'un chauffage au gaz

1. Étude quantitative des transferts thermiques au niveau de la Chaudière

a.(0,5 pt) Une partie de l'énergie interne de l'eau chaude est transférée aux radiateurs tout au long du circuit ainsi qu'aux différents tuyaux.

b.(1,5 pts) L'eau entre à 25°C dans la chaudière et ressort à 60° C donc il y a une variation de température $\Delta\theta=35^{\circ}$ C. La variation d'énergie interne ΔU d'un litre d'eau (de masse m=1,0 kg) de capacité thermique massique c_{eau} dans la chaudière vaut donc : $\Delta U=mc_{eau}\Delta\theta$.

$$\Delta U = 1.0 \times 4.18 \times 10^3 \times 35 = 1.5 \times 10^5 \text{J}.$$

c.(1 pt) Le rendement r de la chaudière vaut 93 %.

Or il est défini par la relation : $r = \frac{\text{énergie transférée à l'eau}}{\text{énergie consommée par la chaudière}}$. Donc l'énergie consommée

par la Chaudière pour chauffer un litre d'eau vaut $\frac{1,5\times10^5}{0,93}=1,6\times10^5$ J.

2. Étude des flux thermiques

a.(0,5 pt) Le flux thermique total est :
$$\Phi = \frac{Q \ pertes}{\tau} = \frac{500 \times 10^3}{30 \times 60} = 280 \ W.$$

b.(1 pt) La consommation est donc de 500 kJ pour 30 minutes et pour 10 m² soit 50 kJ pour 30 minutes par m² donc : $\frac{50 \times 365 \times 24 \times 60}{30} = 8.8 \times 10^5 \text{ kJ}$

soit
$$\frac{8.8 \times 10^5}{3600}$$
 = 2.4 × 10² kWh par an par m².

La réglementation évaluée sur 30 minutes n'est pas respectée mais peut l'être sur l'année en prenant en compte les périodes non chauffées.

EXERCICE 3 (6 points) Détermination de la demi-vie du Polonium 210 N.B. La demi-vie $t_{1/2}$ est désignée dans cet exercice par période radioactive T

A-1) a) (0,5 pt)
$$^{210}_{83}$$
Bi $\rightarrow ^{210}_{84}$ Po + $^{a}_{Z}$ X

Lois de conservation : $210 = a + 0 \Rightarrow a = 0$; $83 = 84 + z \Rightarrow z = -1$

b) (**0,5 pt**) La particule émise est un électron $_{-1}^{0}$ e; $_{83}^{210}$ Bi est un émetteur β^{-} .

2) (1 pt)
$$E_{lib\acute{e}r\acute{e}e} = |\Delta m| \times c^2$$
 ou $|\Delta m|$ est le défaut de masse de la réaction.

$$|\Delta m| = m_{avant} - m_{après} = m(Bi) - m(Po) - m(e)$$

$$= 209,938445 \text{ u} - 209,936648 \text{ u} - 0,00055 \text{ u} = 1,247 \times 10^{-3} \text{ u}$$

$$E_{lib\acute{e}r\acute{e}e} = 1.247 \times 10^{-3} \times 931.5 \frac{MeV}{c^2} \times c^2 = 1.16 \ MeV$$

3)(0,5 pt)
$$E_{\text{lib\'er\'ee}} = E(Po) + E(\gamma) + E(e^-) + E(\overline{\nu}) \text{ donc}$$

$$E_c = E(e) = 1,16 - 0,96 - 0,02 = 0,18 \text{ MeV}$$

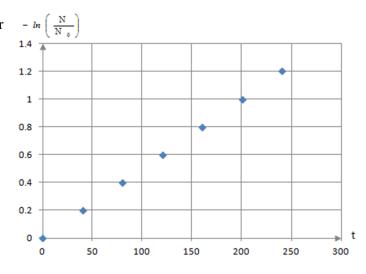
B-1) a) (0,5 pt)
$$^{210}_{84}$$
Po $\rightarrow {}^{4}_{2}$ He + $^{A}_{2}$ X

Lois de conservation : $210 = A + 4 \Rightarrow A = 206$; $84 = Z + 2 \Rightarrow Z = 82$

2) a) (0,5 pt)
$$N = N_0 e^{-\lambda t}$$
 où λ est la constante radioactive de ${}_{Z}^{A}X$.

b) (0,5 pt)
$$\frac{N}{N_0} = e^{-\lambda t}$$
 donc $\ln \left(\frac{N}{N_0}\right) = -\lambda t$; $-\ln \left(\frac{N}{N_0}\right) = \lambda t$

3) a) (0,5 pt) voir graphe ci-contre


l'origine, elle est en accord avec
$$-\ln\left(\frac{N}{N_0}\right) =$$

λt.

c) **i**) (0,25 **pt**)
$$\lambda = \frac{0.6}{120} = 5 \times 10^{-3} \text{ jour}^{-1}$$

ii) (0,25 pt) La pente de cette courbe est la constante radioactive
$$\lambda$$
 du polonium.

iii) (0,25 pt)
$$T = \frac{\ln 2}{\lambda} = 138,6$$
 jours.

